Name: Dr. Naol Tufa Negero
Qualification: PhD in Mathematics, BSc in Mathematics
Position: Assistant Professor of Mathematics
Designation:Head of Applied Mathematics Department, Wollega University
Research Area/Interest: Numerical Analysis, Finite Difference Method, Finite Element Method, Boundary Layer, Computational Mathematics, Numerical Simulation in Engineering, Applied and Computational Mathematical Sciences and other related areas.
Research OutputsLinks:
ORC ID: https://orcid.org/0000-0003-1593-735X
Scopus Author ID: 57226438992
Research ID: JHT-0508-2023
Google Scholar: https://scholar.google.com/citations?user=ih1zBzAAAAAJ&hl=en&oi=ao
Research Publications:
- Negero, N. T., and Duressa, G. F. (2021). A method of line with improved accuracy for singularly perturbed parabolic convection–diffusion problems with large temporal lag. Results in Applied Mathematics, Elsevier, 11, 100174, https://doi.org/10.1016/j.rinam.2021.100174.
- Negero, N., and Duressa, G. (2021). An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag. Journal of Mathematical Modeling, 10(2):173-190. https://jmm.guilan.ac.ir/article_4940.html.
- Negero, N., and Duressa, G. (2022). Uniform convergent solution of singularly perturbed parabolic differential equations with general temporal-lag, Iranian Journal of Science and Technology, Transactions A: Science, Springer, 46(2):507-524, https://link.springer.com/article/10.1007/s40995-021-01258-2.
- Negero, N.T., and Duressa, G.F. Parameter-uniform robust scheme for singularly perturbed parabolic convection-diffusion problems with large time-lag, Computational Methods for Differential Equations(CMDE), Vol. 10, No. 4, 2022, pp. 954-968, DOI:10.22034/cmde.2022.47907.2006, https://cmde.tabrizu.ac.ir/article_14462_0ecf4acd0f1a34e47bf9151150cc5479.pdf
- Negero, N. T., and Duressa, G. F. (2022). An exponentially fitted spline method for singularly perturbed parabolic convection-diffusion problems with large time delay. Tamkang Journal of Mathematics. https://journals.math.tku.edu.tw/index.php/TKJM/article/view/3983
- Negero, N. T., (2022). A uniformly convergent numerical scheme for two parameters singularly perturbed parabolic convection–diffusion problems with a large temporal lag. Results in Applied Mathematics, Elsevier, 11, 100174, https://doi.org/10.1016/j.rinam.2022.100338
- Negero, N. T., (2023). A parameter-uniform efficient numerical scheme for singularly perturbed time-delay parabolic problems with two small parameters. Partial Differential Equations in Applied Mathematics, Elsevier, https://www.sciencedirect.com/science/article/pii/S2666818123000311
- Negero, N. T., (2023). A robust uniformly convergent scheme for two parameters singularly perturbed parabolic problems with time delay. Iranian Journal of Numerical Analysis and Optimization, DOI:22067/IJNAO.2023.80721.1214, https://ijnao.um.ac.ir/article_43907.html.
- Negero, N. T., (2023). A fitted operator method of line scheme for solving two-parameter singularly perturbed parabolic convection-diffusion problems with time delay. Journal of Mathematical Modeling, DOI:22124/JMM.2023.23001.2039 , https://jmm.guilan.ac.ir/article_6601.html.
- Negero, N. T., (2023). A robust fitted numerical scheme for singularly perturbed parabolic reaction–diffusion problems with a general time delay. Results in Physics, Elsevier, 51, 106724. https://www.sciencedirect.com/science/article/pii/S221137972300517X?via%3Dihub
- Negero, N. T., (2023). Fitted cubic spline in tension difference scheme for two-parameter singularly perturbed delay parabolic partial differential equations. Partial Differential Equations in Applied Mathematics, Elsevier, 8, 100530. https://www.sciencedirect.com/science/article/pii/S2666818123000438?via%3Dihub
- Negero, N. T. and et al, (2023). A novel fitted numerical scheme for singularly perturbed delay parabolic problems with two small parameters. Partial Differential Equations in Applied Mathematics, Elsevier, 8, 100546. https://www.sciencedirect.com/science/article/pii/S2666818123000591?via%3Dihub
- Negero, N.T. Uniformly convergent extended cubic B-spline collocation method for two parameters singularly perturbed time-delayed convection-diffusion problems. BMC Research Notes, Springer, 16 (1), 282. https://link.springer.com/article/10.1186/s13104-023-06457-1